Class 12 ISC Maths

Exercise 5 – Chapter 8e – Differentiation | S. Chand & OP Malhotra

Exercise E

Class: 12th

Subject: Mathematics

Chapter: Differentiation of Sec-E

Writer and Publisher: S. Chand & OP Malhotra Publications

Exercise 8e

Formula:

  1. Differentiation Formula

d/dx (xⁿ) = n·xⁿ⁻¹

d/dx (ax+b)ⁿ = n·(ax+b)ⁿ⁻¹ · d/dx (ax+b)

d/dx (a constant) = 0

d/dx [f(x)+c] = d/dx [f(x)]

d/dx [k(f(x))] = k · d/dx [f(x)]

d/dx (u+v) = du/dx + dv/dx

d/dx (u+v+w+…) = du/dx + dv/dx + dw/dx + …

d/dx (uv) = u·dv/dx + v·du/dx

d/dx (u/v) = (v·du/dx – u·dv/dx) / v²

d/dx (x) = 1

d/dx (1/x) = -1/x²

d/dx (√x) = 1/(2√x)

d/dx (1/x²) = -2/x³

d/dx (1/x³) = -3/x⁴

  1. Logarithm, Half Angle & Double Angle Formulas

logarithm functions:

log mⁿ = n·log m

log mn = log m + log n

log m/n = log m – log n

log eˣ = x

log a = 0

log e = 1

xˣ = e^(x logx)

1/2 logx = log root x

Half angle formula:

Sin(θ/2) = ±√((1-cosθ)/2)

Cos(θ/2) = ±√((1+cosθ)/2)

tan(θ/2) = (1-cosθ)/sinθ = sinθ/(1+cosθ) = ±√((1-cosθ)/(1+cosθ))

Double angle formula

Sin 2θ = 2·sinθ·cosθ = 2tanθ/(1+tan²θ)

Cos 2θ = cos²θ – sin²θ = 1-2sin²θ = 2cos²θ – 1

tan 2θ = 2tanθ/(1-tan²θ)

cos²θ = (1-tan²θ)/(1+tan²θ)

(Side notes)

sin(any angle) = ±√((1-cos(double angle))/2)

tan(any angle) = √((1-cos(double angle))/(1+cos(double angle)))

  1. More Differentiation Formulas

d/dx (sinx) = cosx

d/dx (cosx) = -sinx

d/dx (tanx) = sec²x

d/dx (cosec x) = -cosec x · cot x

d/dx (sec x) = sec x · tan x

d/dx (cot x) = -cosec²x

d/dx (aˣ) = aˣ · log a

d/dx (eˣ) = eˣ

d/dx (log x) = 1/x

d/dx (logₐ x) = 1/(x·log a)

Differentiation of Inverse Trigonometric function

d/dx (sin⁻¹x) = 1/√(1-x²)

d/dx (cos⁻¹x) = -1/√(1-x²)

d/dx (tan⁻¹x) = 1/(1+x²)

d/dx (cosec⁻¹x) = -1/(|x|√(x²-1))

d/dx (sec⁻¹x) = 1/(|x|√(x²-1))

d/dx (cot⁻¹x) = -1/(1+x²)

  1. Triple Angle, Sum & Difference Formulas

Triple angle formula

sin 3θ = 3sinθ – 4sin³θ

cos 3θ = 4cos³θ – 3cosθ

tan 3θ = (3tanθ – tan³θ) / (1-3tan²θ)

Sum formula:

sin(A+B) = sinAcosB + cosAsinB

cos(A+B) = cosAcosB – sinAsinB

tan(A+B) = (tanA + tanB) / (1 – tanA·tanB)

Difference formula:

sin(A-B) = sinAcosB – cosAsinB

cos(A-B) = cosAcosB + sinAsinB

tan(A-B) = (tanA – tanB) / (1 + tanA·tanB)

053
KM_C308 Q76
054
KM_C308 Q76
055
KM_C308 Q76
056
KM_C308 Q76
057
KM_C308 Q76
058
KM_C308 Q76
059
KM_C308 Q76
060
KM_C308 Q76
061
KM_C308 Q76
062
KM_C308 Q76
063
KM_C308 Q76
064
KM_C308 Q76

Leave a Reply

Your email address will not be published. Required fields are marked *